### organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

#### $(\pm)$ -trans-3-Benzoylbicyclo[2.2.2]octane-2-carboxylic acid

#### Roger A. Lalancette, Hugh W. Thompson and Andrew P. J. **Brunskill\***

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NI 07102, USA Correspondence e-mail: rogerlal@andromeda.rutgers.edu

Received 15 July 2008; accepted 29 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.101; data-to-parameter ratio = 13.8.

The title keto acid, C<sub>16</sub>H<sub>18</sub>O<sub>3</sub>, displays significant twisting of all three ethylene bridges in its bicyclo[2.2.2]octane structure owing to steric interactions; the bridgehead-to-bridgehead torsion angles are 13.14 (12), 13.14 (13) and 9.37 (13)°. The compound crystallizes as centrosymmetric carboxyl dimers  $[O \cdots O = 2.6513 (12) \text{ Å and } O - H \cdots O = 178^{\circ}]$ , which have two orientations within the cell and contain no significant carboxyl disorder.

#### **Related literature**

For related literature, see: Blackstock et al. (1987); Deutsch (1972); Scribner & Miller (1965); Zimmerman et al. (1992).



#### **Experimental**

Crystal data C16H18O3

 $M_r = 258.30$ 

| Monoclinic, $P2_1/c$           | Z = 4                                     |
|--------------------------------|-------------------------------------------|
| a = 7.9155 (7) Å               | Cu Ka radiation                           |
| b = 11.1129 (9)  Å             | $\mu = 0.73 \text{ mm}^{-1}$              |
| c = 14.7559 (12)  Å            | T = 100 (2)  K                            |
| $\beta = 93.882 \ (3)^{\circ}$ | $0.49 \times 0.30 \times 0.17 \text{ mm}$ |
| $V = 1295.01 (19) \text{ Å}^3$ |                                           |
|                                |                                           |
| Data collection                |                                           |

| Bruker SMART CCD APEXII                | 7983 measured reflections              |
|----------------------------------------|----------------------------------------|
| area-detector diffractometer           | 2405 independent reflections           |
| Absorption correction: multi-scan      | 2350 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 2001)              | $R_{\rm int} = 0.029$                  |
| $T_{\min} = 0.716, \ T_{\max} = 0.886$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 174 parameters                                            |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.100$               | H-atom parameters constrained                             |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 2405 reflections                | $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$  |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |  |
|---------------------------------------------|------|-------------------------|--------------|------------------|--|
| $O3-H3\cdots O2^i$                          | 0.84 | 1.81                    | 2.6513 (12)  | 178              |  |
| Symmetry code: (i) $-r + 1 - v + 1 - z + 1$ |      |                         |              |                  |  |

+1, -y + 1, -y + 1,

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

HWT is grateful to Professor Gree Loober Spoog for helpful consultations. The authors acknowledge support by NSF-CRIF grant No. 0443538.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2213).

#### References

- Blackstock, S. C., Lorand, J. P. & Kochi, J. K. (1987). J. Org. Chem. 52, 1451-1460
- Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deutsch, E. (1972). J. Org. Chem. 37, 3481-3486.
- Scribner, J. D. & Miller, J. A. (1965). J. Chem. Soc. pp. 5377-5380.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zimmerman, H. E., King, R. K. & Meinhardt, M. B. (1992). J. Org. Chem. 57, 5484-5492.

supplementary materials

Acta Cryst. (2008). E64, 01664 [doi:10.1107/S1600536808024112]

#### (±)-trans-3-Benzoylbicyclo[2.2.2]octane-2-carboxylic acid

#### R. A. Lalancette, H. W. Thompson and A. P. J. Brunskill

#### Comment

Our study of crystalline keto acids concerns their repertoire of five known H-bonding modes. Two of these lack ketone involvement, including the commonest, acid dimerization, which is found in the aggregation of the title compound (I).

Fig. 1 shows the asymmetric unit of (I) with its numbering. Even simple bicyclo[2.2.2]octane systems often adopt a twist about the threefold axis, presumably to relieve eclipsing strain in their ethylene bridges (Deutsch, 1972; Blackstock *et al.*, 1987; Zimmerman *et al.*, 1992). In (I) that strain is supplemented by more serious eclipsing and 1,3-diaxial interactions involving the substituents, so that all three bridges are significantly twisted. Fig. 1 illustrates the extent to which the C5—C6 ethylene bridge is clearly not parallel to the others; however, the appearance of parallelism in the C2—C3 and C7—C8 bridges is an artifact of the viewing angle. The torsion angles for the three bridges are: C1—C2—C3—C4 = 13.14 (12)°, C1—C6—C5—C4 = 13.14 (13)°, C1—C7—C8—C4 = 9.37 (13)°.

The benzoyl group has component parts that are only approximately coplanar [the dihedral angle for C3—C10—C11—O1 *versus* the aromatic ring = 24.60 (7)°], and is oriented so that the ketone C=O is aimed toward C2. The carboxyl group is turned, with its C=O toward C3, so that the O2—C9—C2—C3 torsion angle is 18.76 (15)°. The dihedral angle between the ketone (C3—C10—C11—O1) and carboxyl group (C2—C9—O2—O3) is 79.80 (4)°. One may envision other possible conformations for the phenyl ring; however, because of steric hindrance, there is very little rotational freedom for the phenyl group here.

Although carboxyl dimers frequently display complete or partial averaging of C—O bond lengths and C—C—O angles due to disorder, no significant averaging is observed in (I), where these lengths and angles are similar to those in other highly ordered dimeric carboxyls.

Fig. 2 shows the packing for (I), typical for racemic keto acids that are dimeric. Centrosymmetric dimers are centered at 1/2, 1/2, 1/2 in the chosen cell, with a second screw-related set centered on the a cell edge. No close intermolecular contacts were found within the 2.6 Å range we routinely survey for non-bonded C—H···O packing interactions.

#### **Experimental**

*endo*-Bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylic anhydride, purchased from Aldrich Chemical Co., Milwaukee, Wisconsin, USA, was hydrogenated under typical conditions (atmospheric pressure, room temperature, 5%Pd/C, EtOAc) and the isolated product used directly in a Friedel-Crafts acylation of benzene (AlCl<sub>3</sub>). The *cis* keto acid initially obtained (mp 446 K) was epimerized by refluxing in excess aqueous KOH (Scribner & Miller, 1965). The isolated *trans* product (I) was vacuum-distilled and crystallized from acetonitrile to give the crystal used, mp 444 K. The solid-state IR spectrum (KBr) of (I) has C=O absorptions at 1692 (acid) and 1677 cm<sup>-1</sup> (ketone), normal for dimerized COOH and for a benzoyl group without H bonding but with significant coplanarity. In CHCl<sub>3</sub> solution these peaks appear at 1702 & 1679 cm<sup>-1</sup>.

#### Refinement

All H atoms for (I) were found in electron density difference maps. The O—H was constrained to an idealized position with its distance fixed at 0.84 Å and  $U_{iso}(H) = 1.5U_{eq}(O)$ . The methylene, methine and aromatic Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.99, 1.00 and 0.95 Å, respectively, and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### Figures



Fig. 1. The asymmetric unit with its numbering. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. A partial packing diagram, with an extracellular molecule included to show the dimers centered at 1/2, 1/2, 1/2 and 1/2, 0, 0. For clarity, all C-bound H atoms are omitted. Displacement ellipsoids are drawn at the 40% probability level.

#### (±)-trans-3-Benzoylbicyclo[2.2.2]octane-2-carboxylic acid

 Crystal data

  $C_{16}H_{18}O_3$   $F_{000} = 552$ 
 $M_r = 258.30$   $D_x = 1.325 \text{ Mg m}^{-3}$  

 Monoclinic,  $P2_1/c$  Melting point: 444 K

 Hall symbol: -P 2ybc
  $\lambda = 1.54178 \text{ Å}$ 

a = 7.9155 (7) Å b = 11.1129 (9) Å c = 14.7559 (12) Å  $\beta = 93.882 (3)^{\circ}$   $V = 1295.01 (19) \text{ Å}^{3}$ Z = 4

#### Data collection

| Bruker SMART CCD APEXII area-detector diffractometer           | 2405 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2350 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.029$                  |
| T = 100(2)  K                                                  | $\theta_{\text{max}} = 69.8^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 5.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2001) | $h = -8 \rightarrow 9$                 |
| $T_{\min} = 0.716, T_{\max} = 0.886$                           | $k = -13 \rightarrow 11$               |
| 7983 measured reflections                                      | $l = -16 \rightarrow 17$               |
|                                                                |                                        |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                                                   |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                                                              |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                                | $w = 1/[\sigma^2(F_o^2) + (0.0502P)^2 + 0.6168P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                        |
| $wR(F^2) = 0.100$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                                            |
| <i>S</i> = 1.03                                                | $\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$                                                      |
| 2405 reflections                                               | $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$                                                     |
| 174 parameters                                                 | Extinction correction: SHELXTL (Sheldrick, 2004),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0033 (6)                                                                         |

Secondary atom site location: difference Fourier map

#### Special details

Experimental. crystal mounted on cryoloop using Paratone-N

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 7078 reflections

 $\theta = 3.0-69.4^{\circ}$ 

 $\mu = 0.73 \text{ mm}^{-1}$ 

T = 100 (2) K

Block, colourless

 $0.49 \times 0.30 \times 0.17 \text{ mm}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|--------------|---------------------------|
| 01   | 0.61369 (11) | 0.84095 (8)  | 0.26798 (6)  | 0.0210 (2)                |
| C1   | 0.15616 (14) | 0.72901 (11) | 0.34151 (8)  | 0.0160 (3)                |
| H1A  | 0.1178       | 0.7368       | 0.4044       | 0.019*                    |
| 02   | 0.53283 (11) | 0.55007 (8)  | 0.39852 (6)  | 0.0188 (2)                |
| C2   | 0.35047 (14) | 0.71209 (10) | 0.34504 (8)  | 0.0141 (3)                |
| H2A  | 0.4034       | 0.7906       | 0.3641       | 0.017*                    |
| 03   | 0.33736 (12) | 0.61674 (8)  | 0.48872 (6)  | 0.0219 (2)                |
| Н3   | 0.3807       | 0.5638       | 0.5236       | 0.033*                    |
| C3   | 0.40618 (14) | 0.68316 (10) | 0.24926 (7)  | 0.0135 (3)                |
| H3A  | 0.4327       | 0.5953       | 0.2465       | 0.016*                    |
| C4   | 0.25626 (14) | 0.71016 (10) | 0.17863 (8)  | 0.0148 (3)                |
| H4A  | 0.2946       | 0.7028       | 0.1157       | 0.018*                    |
| C5   | 0.19028 (15) | 0.83791 (10) | 0.19406 (8)  | 0.0169 (3)                |
| H5A  | 0.1055       | 0.8599       | 0.1444       | 0.020*                    |
| H5B  | 0.2849       | 0.8961       | 0.1941       | 0.020*                    |
| C6   | 0.10856 (15) | 0.84268 (11) | 0.28620 (8)  | 0.0181 (3)                |
| H6A  | 0.1487       | 0.9150       | 0.3204       | 0.022*                    |
| H6B  | -0.0161      | 0.8480       | 0.2758       | 0.022*                    |
| C7   | 0.06974 (15) | 0.62064 (11) | 0.29348 (8)  | 0.0188 (3)                |
| H7A  | -0.0546      | 0.6272       | 0.2959       | 0.023*                    |
| H7B  | 0.1073       | 0.5453       | 0.3245       | 0.023*                    |
| C8   | 0.11666 (15) | 0.61758 (11) | 0.19320 (8)  | 0.0180 (3)                |
| H8A  | 0.1567       | 0.5361       | 0.1780       | 0.022*                    |
| H8B  | 0.0153       | 0.6361       | 0.1526       | 0.022*                    |
| С9   | 0.41562 (14) | 0.61797 (10) | 0.41280 (8)  | 0.0147 (3)                |
| C10  | 0.56183 (14) | 0.75308 (10) | 0.22505 (8)  | 0.0147 (3)                |
| C11  | 0.64421 (14) | 0.71562 (11) | 0.14064 (8)  | 0.0154 (3)                |
| C12  | 0.73488 (15) | 0.80248 (11) | 0.09565 (8)  | 0.0191 (3)                |
| H12A | 0.7467       | 0.8812       | 0.1204       | 0.023*                    |
| C13  | 0.80759 (16) | 0.77527 (12) | 0.01549 (9)  | 0.0230 (3)                |
| H13A | 0.8669       | 0.8356       | -0.0152      | 0.028*                    |
| C14  | 0.79381 (16) | 0.65959 (13) | -0.02018 (9) | 0.0245 (3)                |
| H14A | 0.8438       | 0.6406       | -0.0752      | 0.029*                    |
| C15  | 0.70687 (16) | 0.57201 (13) | 0.02484 (9)  | 0.0246 (3)                |
| H15A | 0.6996       | 0.4926       | 0.0011       | 0.030*                    |
| C16  | 0.63028 (15) | 0.59953 (11) | 0.10437 (8)  | 0.0196 (3)                |
| H16A | 0.5686       | 0.5396       | 0.1340       | 0.024*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|------------|------------|------------|-------------|------------|-------------|
| O1 | 0.0203 (4) | 0.0220 (5) | 0.0208 (4) | -0.0053 (3) | 0.0021 (3) | -0.0048 (3) |
| C1 | 0.0145 (6) | 0.0178 (6) | 0.0162 (6) | 0.0030 (4)  | 0.0036 (4) | 0.0026 (4)  |
| 02 | 0.0193 (4) | 0.0220 (4) | 0.0154 (4) | 0.0064 (3)  | 0.0022 (3) | 0.0017 (3)  |

## supplementary materials

| C2  | 0.0148 (6) | 0.0136 (5) | 0.0141 (6) | 0.0005 (4)  | 0.0015 (4)  | -0.0004 (4) |
|-----|------------|------------|------------|-------------|-------------|-------------|
| O3  | 0.0241 (5) | 0.0278 (5) | 0.0141 (4) | 0.0107 (4)  | 0.0039 (3)  | 0.0053 (3)  |
| C3  | 0.0135 (5) | 0.0135 (5) | 0.0136 (5) | 0.0009 (4)  | 0.0013 (4)  | -0.0002 (4) |
| C4  | 0.0132 (5) | 0.0168 (6) | 0.0144 (5) | -0.0004 (4) | -0.0001 (4) | 0.0002 (4)  |
| C5  | 0.0161 (6) | 0.0164 (6) | 0.0181 (6) | 0.0010 (4)  | 0.0005 (5)  | 0.0035 (4)  |
| C6  | 0.0179 (6) | 0.0166 (6) | 0.0198 (6) | 0.0044 (4)  | 0.0021 (5)  | 0.0012 (5)  |
| C7  | 0.0147 (6) | 0.0188 (6) | 0.0230 (6) | -0.0016 (4) | 0.0017 (5)  | 0.0052 (5)  |
| C8  | 0.0150 (6) | 0.0175 (6) | 0.0214 (6) | -0.0018 (4) | -0.0003 (5) | -0.0014 (5) |
| C9  | 0.0146 (5) | 0.0156 (6) | 0.0137 (5) | -0.0005 (4) | -0.0007 (4) | -0.0017 (4) |
| C10 | 0.0128 (5) | 0.0159 (6) | 0.0150 (6) | 0.0016 (4)  | -0.0015 (4) | 0.0015 (4)  |
| C11 | 0.0106 (5) | 0.0203 (6) | 0.0152 (6) | 0.0016 (4)  | -0.0013 (4) | 0.0012 (4)  |
| C12 | 0.0158 (6) | 0.0195 (6) | 0.0219 (6) | 0.0014 (5)  | 0.0012 (5)  | 0.0023 (5)  |
| C13 | 0.0175 (6) | 0.0298 (7) | 0.0220 (6) | 0.0012 (5)  | 0.0037 (5)  | 0.0069 (5)  |
| C14 | 0.0179 (6) | 0.0401 (8) | 0.0157 (6) | -0.0002 (5) | 0.0027 (5)  | -0.0037 (5) |
| C15 | 0.0213 (6) | 0.0291 (7) | 0.0237 (6) | -0.0034 (5) | 0.0032 (5)  | -0.0094 (5) |
| C16 | 0.0167 (6) | 0.0214 (6) | 0.0209 (6) | -0.0025 (5) | 0.0028 (5)  | -0.0020 (5) |

Geometric parameters (Å, °)

| O1—C10    | 1.2199 (15) | С6—Н6А     | 0.9900      |
|-----------|-------------|------------|-------------|
| C1—C7     | 1.5346 (17) | С6—Н6В     | 0.9900      |
| C1—C6     | 1.5369 (16) | C7—C8      | 1.5503 (17) |
| C1—C2     | 1.5469 (15) | C7—H7A     | 0.9900      |
| C1—H1A    | 1.0000      | С7—Н7В     | 0.9900      |
| O2—C9     | 1.2251 (15) | C8—H8A     | 0.9900      |
| С2—С9     | 1.5132 (16) | C8—H8B     | 0.9900      |
| C2—C3     | 1.5426 (15) | C10—C11    | 1.5033 (16) |
| C2—H2A    | 1.0000      | C11—C12    | 1.3971 (17) |
| О3—С9     | 1.3164 (14) | C11—C16    | 1.3982 (17) |
| O3—H3     | 0.8400      | C12—C13    | 1.3835 (18) |
| C3—C10    | 1.5195 (15) | C12—H12A   | 0.9500      |
| C3—C4     | 1.5547 (15) | C13—C14    | 1.391 (2)   |
| С3—НЗА    | 1.0000      | C13—H13A   | 0.9500      |
| C4—C5     | 1.5349 (16) | C14—C15    | 1.387 (2)   |
| C4—C8     | 1.5356 (16) | C14—H14A   | 0.9500      |
| C4—H4A    | 1.0000      | C15—C16    | 1.3910 (17) |
| C5—C6     | 1.5456 (16) | C15—H15A   | 0.9500      |
| С5—Н5А    | 0.9900      | C16—H16A   | 0.9500      |
| С5—Н5В    | 0.9900      |            |             |
| C7—C1—C6  | 108.31 (10) | C1—C7—C8   | 109.27 (9)  |
| C7—C1—C2  | 109.35 (9)  | C1—C7—H7A  | 109.8       |
| C6—C1—C2  | 108.98 (9)  | C8—C7—H7A  | 109.8       |
| C7—C1—H1A | 110.1       | С1—С7—Н7В  | 109.8       |
| C6—C1—H1A | 110.1       | С8—С7—Н7В  | 109.8       |
| C2-C1-H1A | 110.1       | H7A—C7—H7B | 108.3       |
| C9—C2—C3  | 110.83 (9)  | C4—C8—C7   | 109.89 (9)  |
| C9—C2—C1  | 113.57 (9)  | C4—C8—H8A  | 109.7       |
| C3—C2—C1  | 109.86 (9)  | C7—C8—H8A  | 109.7       |
| С9—С2—Н2А | 107.4       | C4—C8—H8B  | 109.7       |
|           |             |            |             |

## supplementary materials

| C3—C2—H2A                          | 107.4       | С7—С8—Н8В                           | 109.7               |
|------------------------------------|-------------|-------------------------------------|---------------------|
| C1—C2—H2A                          | 107.4       | H8A—C8—H8B                          | 108.2               |
| С9—О3—Н3                           | 109.5       | 02—C9—O3                            | 123.05 (10)         |
| C10—C3—C2                          | 113.29 (9)  | O2—C9—C2                            | 122.70 (10)         |
| C10—C3—C4                          | 109.75 (9)  | O3—C9—C2                            | 114.24 (9)          |
| C2—C3—C4                           | 108.75 (9)  | O1-C10-C11                          | 120.15 (10)         |
| С10—С3—НЗА                         | 108.3       | O1—C10—C3                           | 122.48 (10)         |
| С2—С3—НЗА                          | 108.3       | C11—C10—C3                          | 117.21 (10)         |
| С4—С3—НЗА                          | 108.3       | C12—C11—C16                         | 119.04 (11)         |
| C5—C4—C8                           | 110.09 (9)  | C12—C11—C10                         | 117.90 (11)         |
| C5—C4—C3                           | 109.33 (9)  | C16—C11—C10                         | 123.04 (11)         |
| C8—C4—C3                           | 107.50 (9)  | C13—C12—C11                         | 120.80 (12)         |
| C5—C4—H4A                          | 110.0       | C13—C12—H12A                        | 119.6               |
| C8—C4—H4A                          | 110.0       | C11 - C12 - H12A                    | 119.6               |
| $C_3 - C_4 - H_4 A$                | 110.0       | C12-C13-C14                         | 119.95 (12)         |
| C4-C5-C6                           | 109 22 (9)  | C12 = C13 = C11                     | 120.0               |
| $C_{4}$ $C_{5}$ $H_{5}$            | 109.22 (5)  | C12 = C13 = H13A                    | 120.0               |
| C6 C5 H5A                          | 109.8       | $C_{14} = C_{13} = M_{13} = M_{13}$ | 120.0<br>110.74(12) |
| $C_{0}$ $C_{5}$ $H_{5}$ $R_{5}$    | 109.8       | $C_{15} = C_{14} = C_{15}$          | 119.74 (12)         |
|                                    | 109.8       | $C_{13}$ $C_{14}$ $H_{14A}$         | 120.1               |
|                                    | 109.8       | C13 - C14 - H14A                    | 120.1               |
| HSA—CS—HSB                         | 108.5       | C14 - C15 - C16                     | 120.56 (12)         |
| CI = C6 = C5                       | 109.68 (9)  | CI4—CI5—HI5A                        | 119.7               |
| С1—С6—Н6А                          | 109.7       | CI6—CI5—HI5A                        | 119.7               |
| С5—С6—Н6А                          | 109.7       | C15-C16-C11                         | 119.88 (12)         |
| C1—C6—H6B                          | 109.7       | C15—C16—H16A                        | 120.1               |
| С5—С6—Н6В                          | 109.7       | C11—C16—H16A                        | 120.1               |
| H6A—C6—H6B                         | 108.2       |                                     |                     |
| C7—C1—C2—C9                        | -73.31 (12) | C1—C7—C8—C4                         | 9.37 (13)           |
| C6—C1—C2—C9                        | 168.48 (9)  | C3—C2—C9—O2                         | 18.76 (15)          |
| C7—C1—C2—C3                        | 51.44 (12)  | C1—C2—C9—O2                         | 142.99 (11)         |
| C6—C1—C2—C3                        | -66.77 (12) | C3—C2—C9—O3                         | -162.26 (10)        |
| C9—C2—C3—C10                       | -98.22 (11) | C1—C2—C9—O3                         | -38.03 (13)         |
| C1—C2—C3—C10                       | 135.46 (10) | C2—C3—C10—O1                        | -15.16 (15)         |
| C9—C2—C3—C4                        | 139.46 (9)  | C4—C3—C10—O1                        | 106.60 (12)         |
| C1—C2—C3—C4                        | 13.14 (12)  | C2—C3—C10—C11                       | 169.41 (9)          |
| C10—C3—C4—C5                       | -72.95 (11) | C4—C3—C10—C11                       | -68.83 (12)         |
| C2—C3—C4—C5                        | 51.49 (12)  | O1-C10-C11-C12                      | -22.30 (16)         |
| C10—C3—C4—C8                       | 167.56 (9)  | C3—C10—C11—C12                      | 153.24 (10)         |
| C2—C3—C4—C8                        | -68.00 (11) | O1—C10—C11—C16                      | 159.41 (12)         |
| C8—C4—C5—C6                        | 50.74 (12)  | C3—C10—C11—C16                      | -25.06 (16)         |
| C3—C4—C5—C6                        | -67.14 (11) | C16-C11-C12-C13                     | 1.15 (18)           |
| C7—C1—C6—C5                        | -67.71 (12) | C10-C11-C12-C13                     | -177.22 (11)        |
| $C_{2}$ $-C_{1}$ $-C_{6}$ $-C_{5}$ | 51 15 (12)  | C11-C12-C13-C14                     | -1.35(19)           |
| C4C5C6C1                           | 13 14 (13)  | C12-C13-C14-C15                     | 0.09(19)            |
| C6-C1-C7-C8                        | 54 02 (12)  | C13 - C14 - C15 - C16               | 14(2)               |
| $C_{2} - C_{1} - C_{7} - C_{8}$    | -64 62 (12) | C14-C15-C16-C11                     | -1.54(19)           |
| $C_{2} = C_{1} = C_{1} = C_{2}$    | -64 17 (12) | C12-C11-C16-C15                     | 0.29(18)            |
| $C_{1}$ $C_{4}$ $C_{8}$ $C_{7}$    | 54.82(12)   | $C_{12} - C_{11} - C_{10} - C_{15}$ | 17857(10)           |
| $C_{3} - C_{4} - C_{0} - C_{1}$    | JT.0J (12)  | 010-011-010-013                     | 1/0.3/(11)          |

# Hydrogen-bond geometry (Å, °) D—H···A D···A D—H···A O3—H3···O2<sup>i</sup> 0.84 1.81 2.6513 (12) 178 Symmetry codes: (i) -x+1, -y+1, -z+1. V V V V

Fig. 1





